CHAPTER V- EQUILIBRIUM OF A BODY

1- Determine the force components acting on the ball-andsocket at A, the reaction at the roller B and the tension on the cord $C D$ needed for equilibrium of the quarter circular plate.
$(\mathrm{NB}=373.21 \mathrm{~N}, \mathrm{Az}=333.33 \mathrm{~N}, \mathrm{TCD}=43.5 \mathrm{~N})$

2- Determine the components of reaction acting at the smooth journal bearings A, B, and C.
$\left(C_{y}=318 \mathrm{~N}, \mathrm{C}_{z}=500 \mathrm{~N}, \mathrm{~B}_{z}=273 \mathrm{~N}, \mathrm{~B}_{\mathrm{x}}=239 \mathrm{~N}, \mathrm{~A}_{z}=90.9\right)$

3- The pole is subjected to the two forces shown. Determine the components of reaction of A assuming it to be a ball-and-socket joint. Also, compute the tension in each of the guy wires, $B C$ and $E D$.
$(F B C=205.09 N=205 N$ FED $=628.57 N=629 N, A x=32.4 N A y=107 N A z=$ $1277.58 \mathrm{~N}=1.28 \mathrm{kN}$)

4- If the pulleys are fixed to the shaft, determine the magnitude of tension T and the x, y, z components of reaction at the smooth thrust bearing A and smooth journal bearing B.
($\mathrm{T}=1233.33 \mathrm{~N}=1.23 \mathrm{kN}, \mathrm{Bx}=-433.33 \mathrm{~N}=-433 \mathrm{~N}, \mathrm{Bz}=1422.22 \mathrm{~N}=1.42 \mathrm{kN}, \mathrm{Ax}$ $=866.67 \mathrm{~N}=867 \mathrm{~N}, A z=711.11 \mathrm{~N}=711 \mathrm{~N}$)

5- The shaft is supported by three smooth journal bearings at A, B, and C. Determine the components of reaction at these bearings.
$\left(C_{y}=450 \mathrm{~N}, \mathrm{C}_{z}=250 \mathrm{~N}, \mathrm{~B}_{z}=1125 \mathrm{~N}, \mathrm{~A}_{z}=125 \mathrm{~N}, \mathrm{~B}_{\mathrm{x}}=25 \mathrm{~N}, \mathrm{~A}_{\mathrm{x}}=475 \mathrm{~N}\right)$

6- Determine the x and z components of reaction at the journal bearing A and the tension in cords $B C$ and $B D$ necessary for equilibrium of the rod.
$\left(A_{x}=0, F_{B D}=208 \mathrm{~N}, F_{B C}=792 \mathrm{~N},\left(M_{A}\right)_{2}=700 \mathrm{~N} . \mathrm{m}\right)$

