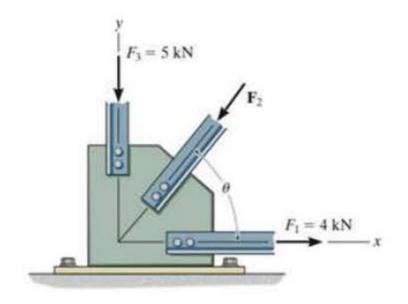
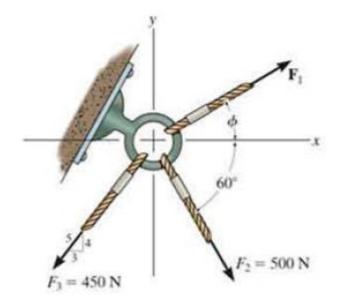
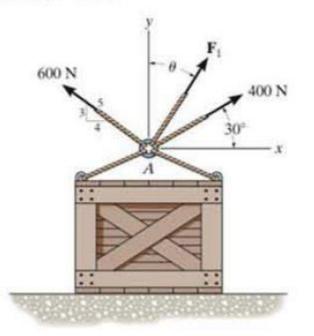
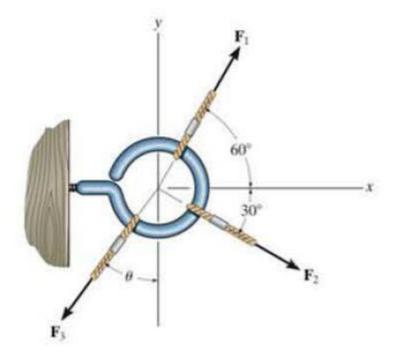

2–2. If $\theta = 60^{\circ}$ and T = 5 kN, determine the magnitude of the resultant force acting on the eyebolt and its direction dis.


*2-8. If the resultant force is required to act along the positive u axis and have a magnitude of 5 kN, determine the required magnitude of \mathbf{F}_B and its direction θ .


•2-17. Resolve F₂ into components along the *u* and *v* axes and determine the magnitudes of these components.


*2-24. If the resultant force \mathbf{F}_R is directed along a line measured 75° clockwise from the positive x axis and the magnitude of \mathbf{F}_2 is to be a minimum, determine the magnitudes of \mathbf{F}_R and \mathbf{F}_2 and the angle $\theta \leq 90^\circ$.


2–34. If the magnitude of the resultant force acting on the eyebolt is 600 N and its direction measured clockwise from the positive x axis is $\theta = 30^{\circ}$, determine the magnitude of \mathbf{F}_1 and the angle ϕ .

*2-40. Determine the magnitude and direction measured counterclockwise from the positive x axis of the resultant force of the three forces acting on the ring A. Take $F_1 = 500$ N and $\theta = 20^\circ$.

2–46. The three concurrent forces acting on the screw eye produce a resultant force $\mathbf{F}_R = 0$. If $F_2 = \frac{2}{3} F_1$ and \mathbf{F}_1 is to be 90° from \mathbf{F}_2 as shown, determine the required magnitude of \mathbf{F}_3 expressed in terms of F_1 and the angle θ .

