CHAPTER IV- FORCE SYSTEM RESULTANTS-

F4-5. Determine the moment of the force about point *O*. Neglect the thickness of the member.

F4-8. Determine the resultant moment produced by the forces about point *O*.

•4–33. The towline exerts a force of P = 4 kN at the end of the 20-m-long crane boom. If x = 25 m, determine the position θ of the boom so that this force creates a maximum moment about point O. What is this moment?

*4–36. The wheelbarrow and its contents have a center of mass at G. If F = 100 N and the resultant moment produced by force \mathbf{F} and the weight about the axle at A is zero, determine the mass of the wheelbarrow and its contents.

F4-22. Determine the couple moment acting on the beam.

F4-21. Determine the magnitude of F so that the resultant couple moment acting on the beam is 1.5 kN·m clockwise.

•4-85. Determine the resultant couple moment acting on the beam. Solve the problem two ways: (a) sum moments about point O; and (b) sum moments about point A.

4-87. Determine the required magnitude of force F, if the resultant couple moment on the beam is to be zero.

F4-26. Replace the loading system by an equivalent resultant force and couple moment acting at point A.

4–106. Replace the force system acting on the beam by an equivalent force and couple moment at point *B*.

•4-109. Replace the force system acting on the post by a resultant force and couple moment at point A.

4–111. Replace the force system by a resultant force and couple moment at point O.

